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Learning objectives 

1. List types of “hierarchically-organized” or 
“clustered” data. 

2. Describe errors in inference that may arise if the 
structure of the data is not taken into account in 
the statistical analysis. 

3. Differentiate between the main statistical 
approaches to hierarchical data. 

4. Identify an example in your own research 
portfolio that may benefit from one of these 
approaches. 



Outline 

1. Explain hierarchical modeling conceptually 

2. Explain hierarchical modeling mathematically 

3. Review examples from the presenters’ 
research relevant to palliative and end-of-life 
care 
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Hierarchical or Multilevel Models 
• The class is called “variance-component” 

models; also called: 
– Mixed models 
– Heirarchical models 
– Multi-level models 

 

 



Conceptual explanation 
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Data 
Why can’t we use ordinary linear regression in 
these cases?  
 

 

 

Non-independent 
observations 







Statistical explanation 



10 



Repeated measures example (PEFR) 

• Longitudinal data: 

– Level-1 unit: time/occasion/visit 

– Level-2 unit: subject 
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PEFR Dataset 
• Peak-expiratory-flow rate 

(PERF) example 
– Reliability study to assess 

the quality of instruments 

to measure PEFR 

– N=17 had PEFR measured 

(L/min) twice  

– used the new Wright Mini 

(WM) peak-flow meter 
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PEFR Dataset… 
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• WM 1st and 2nd recordings by subject ID 
– Horizontal line: overall mean 

 

 

 

 

• Within a subject, 

how far are the 2 

measurements from 

each other? 

• How far are the 

subject-specific 

means from the 

overall mean?  
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Random Intercept Model 
Model: 

 
 

 

 

ijjijy  

Response/outcome of 

the ith occasion for 

subject j 

Overall mean 

Random subject 

effect 

(Intercept) 

~N(0,ψ)  

Random error 

~N(0,θ)  

2-level model: 

• Level-1 unit: occasion 

• Level-2 unit: subject 

Sources of variations?  
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Random Intercept Model 
Assumptions: 
• Each error term (or variance component) is normally 

distributed with mean zero 

 
 

 

• Variance components are uncorrelated 

 

 

• Covariance of any 2 observations within the same subject: 

 

 

• Observations from different subjects uncorrelated 
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Intra-Class Correlation (ICC) 
• Of interest is the proportion of the overall variability 

that can be attributed to subject-to-subject 

differences, or the intra-class correlation. 

 

 

 
– The more differences there are between subjects (relative to 

within), the higher the ICC.  

– like R2 in ordinary regression 

 
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Which data has higher ICC?    B 

A B 
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Estimation using Stata 
• To obtain the MLE for variance-component models 

(such as the random intercept model), use mle option 

for either: 
– xtreg 

– xtmixed 

• xtreg more efficient, but postestimation commands 

of xtmixed more useful 

• Data needs to be in the long format 
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PEFR Example 
Reshape the data: 
 

. reshape long wm, i(id) j(occasion) 

(note: j = 1 2) 

 

Data                               wide   ->   long 

----------------------------------------------------------------------------- 

Number of obs.                       17   ->      34 

Number of variables                   4   ->       4 

j variable (2 values)                     ->   occasion 

xij variables: 

                                wm1 wm2   ->   wm 

----------------------------------------------------------------------------- 

 

level-1 level-2 
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PEFR Example… 
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. xtreg wm, i(id) mle 

Iteration 0:   log likelihood = -187.89003 

Iteration 1:   log likelihood = -184.95979 

Iteration 2:   log likelihood = -184.76189 

Iteration 3:   log likelihood =  -184.5855 

Iteration 4:   log likelihood =  -184.5784 

Iteration 5:   log likelihood = -184.57839 

 

Random-effects ML regression                    Number of obs      =        34 

Group variable: id                              Number of groups   =        17 

 

Random effects u_i ~ Gaussian                   Obs per group: min =         2 

                                                               avg =       2.0 

                                                               max =         2 

 

                                                Wald chi2(0)       =      0.00 

Log likelihood  = -184.57839                    Prob > chi2        =         . 

 

------------------------------------------------------------------------------ 

          wm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   453.9118   26.18616    17.33   0.000     402.5878    505.2357 

-------------+---------------------------------------------------------------- 

    /sigma_u |   107.0464   18.67858                       76.0406    150.6949 

    /sigma_e |   19.91083   3.414659                       14.2269     27.8656 

         rho |   .9665602   .0159494                      .9210943    .9878545 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma_u=0: chibar2(01)=   46.27 Prob>=chibar2 = 0.000 

 

• xtreg specifying                                                      
level-2 variable on the fly: 
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. xtset id 

       panel variable:  id (balanced) 

. xtreg wm, mle nolog 

 

Random-effects ML regression                    Number of obs      =        34 

Group variable: id                              Number of groups   =        17 

 

Random effects u_i ~ Gaussian                   Obs per group: min =         2 

                                                               avg =       2.0 

                                                               max =         2 

 

                                                Wald chi2(0)       =      0.00 

Log likelihood  = -184.57839                    Prob > chi2        =         . 

 

------------------------------------------------------------------------------ 

          wm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   453.9118   26.18616    17.33   0.000     402.5878    505.2357 

-------------+---------------------------------------------------------------- 

    /sigma_u |   107.0464   18.67858                       76.0406    150.6949 

    /sigma_e |   19.91083   3.414659                       14.2269     27.8656 

         rho |   .9665602   .0159494                      .9210943    .9878545 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma_u=0: chibar2(01)=   46.27 Prob>=chibar2 = 0.000 

 

 

• xtreg specifying                                                      
level-2 variable at the beginning: 

̂

̂

̂
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. xtmixed wm || id:, mle 

 

Performing EM optimization:  

 

Performing gradient-based optimization:  

 

Iteration 0:   log likelihood = -184.57839   

Iteration 1:   log likelihood = -184.57839   

 

Computing standard errors: 

 

Mixed-effects ML regression                     Number of obs      =        34 

Group variable: id                              Number of groups   =        17 

 

                                                Obs per group: min =         2 

                                                               avg =       2.0 

                                                               max =         2 

 

 

                                                Wald chi2(0)       =         . 

Log likelihood = -184.57839                     Prob > chi2        =         . 

 

------------------------------------------------------------------------------ 

          wm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   453.9118   26.18617    17.33   0.000     402.5878    505.2357 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

id: Identity                 | 

                   sd(_cons) |   107.0464   18.67858      76.04062     150.695 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   19.91083   3.414678      14.22687    27.86564 

------------------------------------------------------------------------------ 

LR test vs. linear regression: chibar2(01) =    46.27 Prob >= chibar2 = 0.0000 

 

̂

̂

̂
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Inference 
• We make inferences on the population mean: 

 

 

 

 

• We can also test the between-subject variance: 

 

 
– whether there is significant between-subject heterogeneity 

– whether random intercept is needed (relative to linear 

regression) 

– can use likelihood ratio test 

 

 

0: vs 0:0   aHH

0: vs 0:0   aHH
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. xtreg wm, mle nolog 

… 

------------------------------------------------------------------------------ 

          wm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   453.9118   26.18616    17.33   0.000     402.5878    505.2357 

-------------+---------------------------------------------------------------- 

    /sigma_u |   107.0464   18.67858                       76.0406    150.6949 

    /sigma_e |   19.91083   3.414659                       14.2269     27.8656 

         rho |   .9665602   .0159494                      .9210943    .9878545 

------------------------------------------------------------------------------ 

Likelihood-ratio test of sigma_u=0: chibar2(01)=   46.27 Prob>=chibar2 = 0.000 

 

 
. xtmixed wm || id:, mle 

… 

------------------------------------------------------------------------------ 

          wm |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   453.9118   26.18617    17.33   0.000     402.5878    505.2357 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

id: Identity                 | 

                   sd(_cons) |   107.0464   18.67858      76.04062     150.695 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   19.91083   3.414678      14.22687    27.86564 

------------------------------------------------------------------------------ 

LR test vs. linear regression: chibar2(01) =    46.27 Prob >= chibar2 = 0.0000 

 

 0:0 H

0:0 H
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. estimates store ri 

. quietly xtmixed wm, mle 

. lrtest ri 

 

Likelihood-ratio test                                 LR chi2(1)  =     46.27 

(Assumption: . nested in ri)                          Prob > chi2 =    0.0000 

 

 

 

• equivalent to fitting reduced and full model then 

using the lrtest command. 
– because of the  constraint ψ≥0, the p-value has to be 

divided by 2. 

 

Need to 

divide by 2 
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Fixed vs Random Effects 
• In the PEFR example, we could have treated 

the subject effects as a fixed factor in an 

ANOVA model (or as a bunch of dummy 

variables in a regression model). This is known 

as a fixed effects model. 

• Both the random intercept model and fixed 

effects model include subject-specific 

intercepts (level-2) to account for unobserved 

heterogeneity 
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Fixed vs Random Effects… 
• Which model should be used? 

– If the target of inference is on the population of 

subjects/groups, then the effect should be random. 

– If the target of inference is on the subjects/groups 

in the particular sample, then the effect should be 

fixed. 
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Fixed vs Random Effects… 
• Notes on random effects: 

– assume cluster effects is exchangeable, i.e., at the 

same level 

– need enough clusters (>10) 

– cluster size at least 2 (but singletons also used but 

don’t contribute to estimating within-cluster 

correlation) 
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Clustered data example (GSCE) 
• Cross-sectional data: 

– Level-1 unit: student 

– Level-2 unit: school 
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Models 
• Random Intercept model 

– overall level of response vary between clusters 

• Random Intercept model with covariates 

– overall level of response vary between clusters  

– covariate effects common across clusters 

• Random Coefficient model (with covariate) 

– overall level of response vary between clusters  

– covariate effects vary between clusters 
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GCSE Example 
• How effective are different schools? 

– Outcome: Graduate Certificate of Secondary 

Education (GCSE) – taken at age 16 

– Sample: ~4000 students within 65 schools 

– Primary covariate: London Reading test (LRT) – 

taken at age 11 

– Other covariates: gender, school type 

• Research question: 

– Effect of LRT on GCSE? 

– Does it vary among schools? 
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School 1 

School 3 

School 2 

LRT 

GCSE School 1 

School 3 

School 2 

LRT 

GCSE 

School 1 

School 3 

School 2 

LRT 

GCSE • Linear regression 

• Random intercept 

• Random Coefficient 



ID 1 

ID 3 

ID 2 

Time 

Outcome 

• Longitudinal data 
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GCSE Data 

Can we fit a 

separate 

regression 

line within 

each school? 
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Separate Linear Regression  
for each School 

ijijjjij xy   21

GCSE score 

for Student i 

in School j 

jth School 

specific 

intercept  

jth School 

specific slope 

LRT score for 

Student i in 

School j 

Random error 

~N(0,θj)  
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. use http://www.stata-press.com/data/mlmus3/gcse 

. regress gcse lrt if school==1 

 

      Source |       SS       df       MS              Number of obs =      73 

-------------+------------------------------           F(  1,    71) =   59.44 

       Model |  4084.89189     1  4084.89189           Prob > F      =  0.0000 

    Residual |  4879.35759    71  68.7233463           R-squared     =  0.4557 

-------------+------------------------------           Adj R-squared =  0.4480 

       Total |  8964.24948    72  124.503465           Root MSE      =    8.29 

 

------------------------------------------------------------------------------ 

        gcse |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         lrt |   .7093406   .0920061     7.71   0.000     .5258856    .8927955 

       _cons |   3.833302   .9822377     3.90   0.000     1.874776    5.791828 

------------------------------------------------------------------------------ 

• Fit a regression line for school 1: 
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. predict p_gcse, xb 

. twoway (scatter gcse lrt) (line p_gcse lrt, sort) if school==1, xtitle(LRT) 
ytitle(GCSE) 

 

• Fitted regression line for school 1: 
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LRT

gcse Linear prediction
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. twoway(scatter gcse lrt) (lfit 
gcse lrt, sort lpatt(solid)), 
by(school, compact 
legend(off) cols(5)) 
xtitle(LRT) ytitle(GCSE) 
ysize(3) xsize(2) 

• To obtain a trellis 

graph containing such 

plots for all 65 school: 
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• We will now fit a SLRM for each school and 

summarize the estimates across schools: 

1. Estimate slope and intercept for each school 

2. Estimate the mean slope and mean intercept 

3. Estimate variance  and covariance (also 

correlation) for slopes and intercepts 

 

 

 

Separate Linear Regression  
for each School 



41 

. egen num=count(gcse),by (school) 

. statsby inter=_b[_cons] slope=_b[lrt],by(school) saving(ols): regress gcse lrt if num>4 

(running regress on estimation sample) 

 

      command:  regress gcse lrt if num>4 

        inter:  _b[_cons] 

        slope:  _b[lrt] 

           by:  school 

 

Statsby groups 

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5  

..................................................    50 

.............. 

 

. sort school 

. merge m:1 school using ols 

    Result                           # of obs. 

    ----------------------------------------- 

    not matched                             2 

        from master                         2  (_merge==1) 

        from using                          0  (_merge==2) 

 

    matched                             4,057  (_merge==3) 

    ----------------------------------------- 

. drop _merge 

. twoway scatter slope inter, xtitle(Intercept) ytitle(Slope) 

• Stata code 
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• Scatter plot of fitted slopes and intercepts 
0
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S
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p
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Intercept

• Do the intercepts vary across schools? 

• Do the slopes vary across schools? 

• Is there a relationship between the intercepts and slopes? 
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Spaghetti Plot: 

 

 

. generate pred=inter+slope*lrt  

(2 missing values generated) 

. sort school lrt 

. twoway (line pred lrt, connect(ascending)), xtitle(LRT) ytitle(Fitted 
regression lines) 

calculate predicted values 
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• Do the 

intercepts 

vary across 

schools? 

• Do the 

slopes vary 

across 

schools? 
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• Approach 1: dummy variable for each school 

– assumes common residual variance (j = ) 

– need interaction of each dummy variable with LRT 

(how many?!) 

– assumes fixed school effect (inference limited to 

schools in the sample) 

 

Creating a Joint Model 
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• Better approach: Random Coefficient model 

– school-specific intercept, school-specific slope 

– estimate mean intercept and mean slope 

– describe (co)variation in intercepts and slopes 

 

Creating a Joint Model 
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Estimation using Stata 
• We can use xtmixed to fit random 

coefficient models  

– xtreg can only fit 2-level random intercept 

models 

• Recall: want to model GCSE as a function of 

LRT 
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GCSE Data 
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Random Intercept (RI) Model 
• First we fit an RI model 

– subject-specific intercept 

– common LRT slope across schools 

• Var(Slope) = 22 = 0 

• Cov(Int,Slope) = 12 = 0 

 

 

 

 

ijjijij LRTGCSE   121 *
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. xtmixed gcse lrt || school:, mle nolog 
 

Mixed-effects ML regression                     Number of obs      =      4059 

Group variable: school                          Number of groups   =        65 

 

                                                Obs per group: min =         2 

                                                               avg =      62.4 

                                                               max =       198 

 

 

                                                Wald chi2(1)       =   2042.57 

Log likelihood = -14024.799                     Prob > chi2        =    0.0000 

 

------------------------------------------------------------------------------ 

        gcse |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         lrt |   .5633697   .0124654    45.19   0.000     .5389381    .5878014 

       _cons |   .0238706   .4002255     0.06   0.952     -.760557    .8082982 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

school: Identity             | 

                   sd(_cons) |   3.035269   .3052513      2.492261    3.696587 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   7.521481   .0841759      7.358295    7.688285 

------------------------------------------------------------------------------ 

LR test vs. linear regression: chibar2(01) =   403.27 Prob >= chibar2 = 0.0000 

 

. estimates store ri 

11̂

̂

1̂
2̂
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Is there an LRT effect? 

Conclusion: 

• z = 0.5634/0.01247 = 45.19 

• p-value <0.001  

• LRT is significantly associated with GCSE 

 

0:  vs0: 220   aHH

95% CI for LRT effect? 

 
)59.0 ,54.0(

ˆSE*96.1ˆ
22



 
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Calculate the ICC: 

14.0
521.7035.3

035.3

ˆ
ˆ

22

2

11

11 









 



Interpretation: 

• Proportion of total variance in GCSE due to school-to-

school variation is 14% 

• Within-school correlation is relatively low 
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Random Coefficient Model 
Model: 

 
 

 

 

ijijjjijij xxy   2121

GESC of the 

ith Student in 

School j 

LRT of the 

ith Student in 

School j 

overall 

mean 

Intercept 

School j 

intercept 

deviation 
overall mean 

Slope (effect) 

School j 

slope 

deviation 

Error term 

~N(0,) 
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Random Coefficient (RC) Model 
• Next we fit an RC model 

– subject-specific intercept 

– subject-specific slope 

– possible intercept-slope covariance 

 

 

 

 
ijijjjijij LRTLRTGCSE   ** 2121
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. xtmixed gcse lrt || school:lrt, cov(unstructured) mle nolog 
 

Mixed-effects ML regression                     Number of obs      =      4059 

Group variable: school                          Number of groups   =        65 

 

                                                Obs per group: min =         2 

                                                               avg =      62.4 

                                                               max =       198 

 

 

                                                Wald chi2(1)       =    779.79 

Log likelihood = -14004.613                     Prob > chi2        =    0.0000 

 

------------------------------------------------------------------------------ 

        gcse |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         lrt |    .556729   .0199368    27.92   0.000     .5176535    .5958044 

       _cons |   -.115085   .3978346    -0.29   0.772    -.8948264    .6646564 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

school: Unstructured         | 

                     sd(lrt) |   .1205646   .0189827      .0885522    .1641498 

                   sd(_cons) |   3.007444   .3044148      2.466258    3.667385 

             corr(lrt,_cons) |   .4975415   .1487427      .1572768    .7322094 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   7.440787   .0839482      7.278058    7.607155 

------------------------------------------------------------------------------ 

LR test vs. linear regression:       chi2(3) =   443.64   Prob > chi2 = 0.0000 

 

Note: LR test is conservative and provided only for reference. 

 

. estimates store rc 

11̂

̂

1̂
2̂

22̂

12̂

slope 

12 
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Estimated Covariance and Correlation: 
. estat recovariance 

Random-effects covariance matrix for level school 

 

             |       lrt      _cons  

-------------+---------------------- 

         lrt |  .0145358             

       _cons |  .1804042    9.04472  

50.0
044.9*0145.0

18.0
ˆ

2211

21
12 




 



Interpretation: 

• LRT tends to have greater effect (slope) in schools with higher 

school-specific GCSE (intercept) 
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Does the RC model fit better than the RI model? 

• Test the slope variance: 

. lrtest rc ri 
 

Likelihood-ratio test                                 LR chi2(2)  =     40.37 

(Assumption: ri nested in rc)                         Prob > chi2 =    0.0000 

 

Note: The reported degrees of freedom assumes the null hypothesis is not on 
the boundary of the parameter space.  If this is not true, then the 

      reported test is conservative. 

0: 220 H

Need to divide by 

2 to get correct p-

value 

0: 22 aH



Examples 

 



• Retrospective cohort using Project IMPACT 

• 277,693 patient visits in 141 ICUs in 105 hospitals 

• Explored ICU- and patient-level associations with 
admission of patients with preexisting treatment 
limitations 



• Two illustrative analyses: 

– (1) Fixed effect models that did and did not include ICU as 
a fixed effect to explore the association of patient race 
(white / black / other) with the outcome 

– (2) Random effect models that did and did not include ICU 
as a random effect to explore the association of race and 
ICU model (open / closed) with the outcome 



ICU as a fixed effect – patient level 

Y X 

  With ICU as a fixed 

effect 

Without ICU as a 

fixed effect 

Race (ref=White)  OR (95% CI) OR (95% CI) 

     Black 0.55 (0.51, 0.59) 0.47 (0.44, 0.50) 

     Other 0.56 (0.51. 0.60) 0.64 (0.59, 0.68) 

Race (ref=White) Beta (SE) Beta (SE) 

     Black -0.60 (0.036) -0.75 (0.032) 

     Other -0.59 (0.041) -0.45 (0.036) 



ICU as a random effect – patient and 
ICU level 

Y X 

  With ICU as a fixed 

effect 

Without ICU as a 

fixed effect 

Race (ref=White)  OR (95% CI) OR (95% CI) 

     Black 0.55 (0.51, 0.58) 0.47 (0.44, 0.50) 

     Other 0.56 (0.52, 0.60) 0.63 (0.59, 0.68) 

Model (ref=Open) 

     Closed 1.07 (0.76, 1.51) 0.81 (0.75, 0.87) 

Race (ref=White) Beta (SE) Beta (SE) 

     Black -0.61 (0.035) -0.76 (0.033) 

     Other -0.58 (0.040) 0.46 (0.036) 

Model (ref=Open) 

     Closed 0.069 (0.177) -0.22 (0.037) 



• Retrospective cohort using Project IMPACT 

• 264,401 patient visits in 155 ICUs in 107 hospitals 
over 8 years (total of 658 ICU-years) 

• Explored the association between ICU strain (census, 
acuity of other ICU patients, number of new 
admissions) and in-hospital mortality 



• Multiple ways to cluster: Hospital? ICU? Year? ICU and 
year? ICU-year? Etc.. 

• Random or fixed effect? 

• Cannot cluster on hospital and ICU because most 
hospitals only have a single ICU  

• We chose to model ICU as a fixed effect to control for 
known differences across ICUs 

• ICU and year entered as single term; if ICU-specific 
effects change over time, we did not want to assume the 
changes are in the same direction 



Clustering on ICU and year 

Y X 

  ICU-year entered as a 

single term  

ICU and year 

entered separately 

 OR (95% CI) OR (95% CI) 

Census 1.011 (0.996, 1.025) 1.011 (0.996, 1.025) 

Acuity 0.998 (0.977, 1.019) 0.958 (0.937, 0.977) 

Admissions 0.970 (0.957, 0.983) 0.967 (0.954, 0.979) 

Beta (SE) Beta (SE) 

Census 0.011 (0.007) 0.011 (0.007) 

Acuity -0.002 (0.011) -0.043 (0.010) 

Admissions -0.031 (0.007) -0.034 (0.007) 



Final thoughts 

Y X 

• Clustering should be considered any time study 
participants can be contained within groups 

• Failing to do so may result in incorrect estimates, 
confidence intervals, and p-values 

• Fixed effects, random effects, and use of 
cluster/robust error terms are all ways to handle 
clustering 

• The choice of the clustering variable depends on the 
data and your research question 

 
 

 



Racial disparities 

• Blacks and whites tend to live in segregated 
regions and use different hospitals 

• If these hospitals differ in treatment patterns, 
some of the observed racial disparities may be 
mediated by a hospital effect rather than by 
race. 

– How does this affect policy implications of 
findings? 
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Don’t…. 

• Include hospital-level characteristics (e.g., 
hospital fixed effects) in a patient-level 
regression. 
– If 2 patients who differed only in race (1 black and 1 

white, but otherwise with the same measured clinical 
characteristics) went to 2 different hospitals with the 
same measured characteristics (eg, teaching status, 
size), would they experience the same care and 
outcomes? 
• Including hospital level characteristics in patient-level 

regressions can incorrectly attribute sources of variance 
between correlated variables such as a hospital and race  

 

 



Do…. 

• Use multilevel (hierarchical) modeling, or  

• Use individual hospital fixed effects (e.g., 
hospital ID) in patient-level regressions 

– if a black and white patient with similar measured 
clinical characteristics went to the same hospital, 
would they experience the same care and 
outcomes different? 


