Foley Retreat Research Methods Workshop: Introduction to Hierarchical Modeling

> Amber Barnato MD MPH MS University of Pittsburgh Scott Halpern MD PhD University of Pennsylvania

Learning objectives

- List types of "hierarchically-organized" or "clustered" data.
- 2. Describe errors in inference that may arise if the structure of the data is not taken into account in the statistical analysis.
- 3. Differentiate between the main statistical approaches to hierarchical data.
- 4. Identify an example in your own research portfolio that may benefit from one of these approaches.

Outline

- 1. Explain hierarchical modeling conceptually
- 2. Explain hierarchical modeling mathematically
- Review examples from the presenters' research relevant to palliative and end-of-life care

Hierarchical or Multilevel Models

- The class is called "variance-component" models; also called:
 - Mixed models
 - Heirarchical models
 - Multi-level models

Conceptual explanation

Data

Why can't we use ordinary linear regression in these cases?

Rabe-Hesketh & Skrondal (2012): Multilevel and Longitudinal Modeling Using Stata

Non-independent observations

Statistical explanation

Rabe-Hesketh & Skrondal (2012): Multilevel and Longitudinal Modeling Using Stata

Repeated measures example (PEFR)

- Longitudinal data:
 - Level-1 unit: time/occasion/visit
 - Level-2 unit: subject

PEFR Dataset

	id	wm1	wm2
1	1	512	525
2	2	430	415
3	3	520	508
4	4	428	444
5	5	500	500
6	6	600	625
7	7	364	460
8	8	380	390
9	9	65.8	642
10	10	445	432
11	11	432	420
12	12	626	605
13	13	260	227
14	14	477	467
15	15	259	268
16	16	350	370
17	17	451	443

- Peak-expiratory-flow rate (PERF) example
 - Reliability study to assess the quality of instruments to measure PEFR
 - N=17 had PEFR measured (L/min) twice
 - used the new Wright Mini(WM) peak-flow meter

PEFR Dataset...

WM 1st and 2nd recordings by subject ID

 Horizontal line: overall mean

- Within a subject, how far are the 2 measurements from each other?
- How far are the subject-specific means from the overall mean?

Random Intercept Model

- Level-1 unit: occasion
- Level-2 unit: subject

Random Intercept Model

Assumptions:

• Each error term (or variance component) is normally distributed with mean zero

$$\zeta_j \sim N(\mathbf{0}, \boldsymbol{\psi})$$
$$\varepsilon_{ii} \sim N(\mathbf{0}, \boldsymbol{\theta})$$

$$\Rightarrow \mathbf{E}(\mathbf{y}_{ij}) = \boldsymbol{\beta}$$

• Variance components are uncorrelated

$$\operatorname{Cov}(\varepsilon_{ij},\zeta_j) = 0 \implies \operatorname{Var}(y_{ij}) = \psi + \theta$$

• Covariance of any 2 observations within the same subject:

$$\mathbf{Cov}(y_{ij}, y_{i'j}) = \psi \qquad , i \neq i'$$

• Observations from different subjects uncorrelated $Cov(y_{ij}, y_{ij'}) = 0$, $j \neq j'$

Intra-Class Correlation (ICC)

• Of interest is the proportion of the overall variability that can be attributed to subject-to-subject differences, or the intra-class correlation.

$$\rho = \frac{Var(\zeta_j)}{Var(y_{ij})} = \frac{\psi}{\psi + \theta}$$

- The more differences there are between subjects (relative to within), the higher the ICC.
- like R² in ordinary regression

Estimation using Stata

- To obtain the MLE for variance-component models (such as the random intercept model), use mle option for either:
 - xtreg
 - xtmixed
- xtreg more efficient, but postestimation commands
 of xtmixed more useful
- Data needs to be in the long format

PEFR Example

PEFR Example...

	id	wm1	wm2	mean_wm			id	occasion	wm	mean_wm
1	1	512	525	518.5		1	1	1	512	518.5
2	2	430	415	422.5		2	1	2	525	518.5
з	3	520	508	514		з	2	1	430	422.5
4	4	428	444	436		4	2	2	415	422.5
5	5	500	500	500		5	3	1	520	514
6	6	600	625	612.5		6	3	2	508	514
7	7	364	460	412		7	4	1	428	436
8	8	380	390	385		8	4	2	444	436
9	9	65.8	642	650	- /	9	5	1	500	500
10	10	445	432	438.5		10	5	2	500	500
11	11	432	420	426		11	6	1	600	612.5
12	12	626	605	615.5		12	6	2	625	612.5
13	13	260	227	243.5		13	7	1	364	412
14	14	477	467	472		14	7	2	460	412
15	15	259	268	263.5		15	8	1	380	385
16	16	350	370	360		16	8	2	390	385
17	17	451	443	447		17	9	1	65.8	65 0
						18	9	2	642	650

• xtreg specifying level-2 variable on the fly:

. xtreg wm, i(id) mle						
Iteration 0:	log likeliho	od = -187.89	9003				
Iteration 1:	log likeliho	od = -184.95	5979				
Iteration 2:	log likeliho	od = -184.76	6189				
Iteration 3:	log likeliho	od = -184.5	5855				
Iteration 4:	log likeliho	od = -184.5	5784				
Iteration 5:	log likeliho	od = -184.5	7839				
Random-effects	ML regressic	'n		Number o	f obs	=	34
Group variable:	: id			Number o	f groups	5 =	17
Random effects	u i ~ Gaussi	an		Obs per	group: n	nin =	2
	—				 6	avg =	2.0
					r	nax =	2
				Wald chi	2(0)	=	0.00
Log likelihood	= -184.5783	9		Prob > c	hi2	=	
wm +-	Coei.	Std. Err.	Z 	P> z		Cont.	Interval]
_cons	453.9118	26.18616	17.33	0.000	402.58	378	505.2357
/sigma_u	107.0464	18.67858			76.04	106	150.6949
/sigma_e	19.91083	3.414659			14.22	269	27.8656
rho	.9665602	.0159494			.92109	943	.9878545

21

 xtreg specifying level-2 variable at the beginning:

$$\hat{\rho} = \frac{\hat{\psi}}{\hat{\psi} + \hat{\theta}} = \frac{107.05^2}{107.05^2 + 19.91^2} = 0.97$$

```
. xtmixed wm || id:, mle
   Performing EM optimization:
   Performing gradient-based optimization:
   Iteration 0: log likelihood = -184.57839
   Iteration 1: log likelihood = -184.57839
   Computing standard errors:
                                     Number of obs = 34
   Mixed-effects ML regression
   Group variable: id
                                     Number of groups = 17
                                     Obs per group: min = 2
                                               avg = 2.0
                                               max = 2
                                    Wald chi2(0) =
   Log likelihood = -184.57839
                                  Prob > chi2 =
          wm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
   B
        _cons | 453.9118 26.18617 17.33 0.000 402.5878 505.2357
    _____
    Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
   _____
   id: Identity
    sd(_cons) | 107.0464 18.67858 76.04062 150.695
\sqrt{\hat{\psi}}
\sqrt{\hat{oldsymbol{	heta}}}
          sd(Residual) | 19.91083 3.414678 14.22687 27.86564
   LR test vs. linear regression: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000
```

23

Inference

• We make inferences on the population mean:

$$H_0: \beta = 0$$
 vs $H_a: \beta \neq 0$

$$z = \frac{\hat{\beta}}{\operatorname{SE}(\hat{\beta})}$$
95% CI: $\hat{\beta} \pm 1.96 * SE(\hat{\beta})$

• We can also test the between-subject variance:

$$H_0: \psi = 0 \text{ vs } H_a: \psi > 0$$

- whether there is significant between-subject heterogeneity
- whether random intercept is needed (relative to linear regression)
- can use likelihood ratio test

. xtreg wm, mle 	nolog				$H_0:\beta=0$)	
wm	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
	453.9118	26.18616	17.33	0.000	402.5878	505.2357	
/sigma_u /sigma_e rho	107.0464 19.91083 .9665602	18.67858 3.414659 .0159494			76.0406 14.2269 .9210943	150.6949 27.8656 .9878545	
Likelihood-rati	o test of si	igma_u=0: ch	ibar2(01)= 46.	.27 Prob>=chiba:	r2 = 0.000	
. xtmixed wm 	id:, mle						
wm	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
	453.9118	26.18617	17.33	0.000	402.5878	505.2357	
Random-effect	s Parameters	s Estim	ate St	d. Err.	[95% Conf.	Interval]	
id: Identity	sd (_cons	s) 107.0	464 18	.67858	76.04062	150.695	
	sd(Residual	L) 19.91	.083 3.	414678	14.22687	27.86564	
LR test vs. lin	ear regressi	lon: chibar2	2(01) =	46.27	Prob >= chibar:	2 = 0.0000	

 $H_0: \psi = 0$

• equivalent to fitting reduced and full model then using the lrtest command.

- because of the constraint $\psi \ge 0$, the p-value has to be divided by 2.

- . estimates store ri
- . quietly xtmixed wm, mle
- . lrtest ri

Likelihood-ratio test (Assumption: . nested in ri)

Fixed vs Random Effects

- In the PEFR example, we could have treated the subject effects as a fixed factor in an ANOVA model (or as a bunch of dummy variables in a regression model). This is known as a fixed effects model.
- Both the random intercept model and fixed effects model include subject-specific intercepts (level-2) to account for unobserved heterogeneity

Fixed vs Random Effects...

- Which model should be used?
 - If the target of inference is on the population of subjects/groups, then the effect should be random.
 - If the target of inference is on the subjects/groups in the particular sample, then the effect should be fixed.

Fixed vs Random Effects...

- Notes on random effects:
 - assume cluster effects is exchangeable, i.e., at the same *level*
 - need enough clusters (>10)
 - cluster size at least 2 (but singletons also used but don't contribute to estimating within-cluster correlation)

Clustered data example (GSCE)

- Cross-sectional data:
 - Level-1 unit: student
 - Level-2 unit: school

Models

• Random Intercept model

- overall level of response vary between clusters

- Random Intercept model with covariates

 overall level of response vary between clusters
 covariate effects common across clusters
- Random Coefficient model (with covariate)

 overall level of response vary between clusters
 covariate effects vary between clusters

GCSE Example

- How effective are different schools?
 - Outcome: Graduate Certificate of Secondary Education (GCSE) – taken at age 16
 - Sample: ~4000 students within 65 schools
 - Primary covariate: London Reading test (LRT) taken at age 11
 - Other covariates: gender, school type
- Research question:
 - Effect of LRT on GCSE?
 - Does it vary among schools?

LRT

• Longitudinal data

Time

GCSE Data

	school	student	gcse	lrt	girl	schgend	avslrt	schav	vrband
63	1	63	14.395	8.6701	0	1	1.6617	2	1
64	1	64	15.062	5.3641	1	1	1.6617	2	1
65	1	65	18.138	4.5376	0	1	1.6617	2	1
66	1	66	7.4723	12.803	1	1	1.6617	2	1
67	1	67	-10.291	-12.819	0	1	1.6617	2	3
68	1	68	-1.2908	-1.248	0	1	1.6617	2	2
69	1	69	15.792	2.058	0	1	1.6617	2	2
70	1	70	13.101	16.935	0	1	1.6617	2	1
71	1	71	-11.186	-8.6867	1	1	1.6617	2	2
72	1	72	8.9657	8.6701	0	1	1.6617	2	1
73	1	73	2.6132	3.711	0	1	1.6617	2	2
74	2	1	15.792	1.2315	1	3	3.9515	3	2
75	2	2	12.405	7.0171	1	3	3.9515	3	1
76	2	3	6.1073	2.8845	1	3	3.9515	3	2
77	2	4	4.7819	7.0171	1	3	3.9515	3	1
78	2	5	-11.186	-6.2071	1	3	3.9515	3	2
79	2	6	17.349	12.803	1	3	3.9515	3	1
80	2	7	24.087	6.1906	1	3	3.9515	3	1
81	2	8	29.247	9.4967	1	3	3.9515	3	1
82	2	9	27.018	-4.5541	1	3	3.9515	3	2
83	2	10	13.101	11.976	1	3	3.9515	3	1
84	2	11	15.062	10.323	1	3	3.9515	3	1
85	2	12	-1.2908	-12.819	1	3	3.9515	3	3
86	2	13	-1.2908	-5.3806	1	3	3.9515	3	2

Can we fit a separate regression line within each school?

Separate Linear Regression for each School

• Fit a regression line for school 1:

. use http://www.stata-press.com/data/mlmus3/gcse
. regress gcse lrt if school==1

Source	SS	df 	MS		Number of obs	= 73 = 5944
 Model Residual	4084.89189 4879.35759	1 408 71 68.	4.89189 7233463		Prob > F R-squared	= 0.0000 = 0.4557 = 0.4480
Total	8964.24948	72 124	.503465		Root MSE	= 8.29
gcse	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lrt _cons	.7093406 3.833302	.0920061 .9822377	7.71 3.90	0.000	.5258856 1.874776	.8927955 5.791828

• Fitted regression line for school 1:

- . predict p_gcse, xb
- . twoway (scatter gcse lrt) (line p_gcse lrt, sort) if school==1, xtitle(LRT)
 ytitle(GCSE)

• To obtain a trellis graph containing such plots for all 65 school:

```
. twoway(scatter gcse lrt) (lfit
 gcse lrt, sort lpatt(solid)),
 by(school, compact
 legend(off) cols(5))
 xtitle(LRT) ytitle(GCSE)
 ysize(3) xsize(2)
```


Separate Linear Regression for each School

- We will now fit a SLRM for each school and summarize the estimates across schools:
 - 1. Estimate slope and intercept for each school
 - 2. Estimate the mean slope and mean intercept
 - 3. Estimate variance and covariance (also correlation) for slopes and intercepts

• Stata code

```
. egen num=count(gcse), by (school)
. statsby inter= b[ cons] slope= b[lrt], by(school) saving(ols): regress gcse lrt if num>4
(running regress on estimation sample)
    command: regress gcse lrt if num>4
      inter: b[ cons]
      slope: b[lrt]
        by: school
Statsby groups
50
. . . . . . . . . . . . . .
. sort school
. merge m:1 school using ols
  Result
                            # of obs.
   not matched
                                  2
      from master
                                  2
                                    (merge==1)
      from using
                                  0
                                    (merge==2)
                             4,057
                                   ( merge==3)
   matched
         _____
. drop merge
```

. twoway scatter slope inter, xtitle(Intercept) ytitle(Slope)

• Scatter plot of fitted slopes and intercepts

- Do the intercepts vary across schools?
- Do the slopes vary across schools?
- Is there a relationship between the intercepts and slopes?

Spaghetti Plot:

- . generate pred=inter+slope*lrt
- (2 missing values generated)
- . sort school lrt
- . twoway (line pred lrt, connect(ascending)), xtitle(LRT) ytitle(Fitted regression lines)

Do theinterceptsvary acrossschools?

calculate predicted values

• Do the slopes vary across schools?

Creating a Joint Model

- Approach 1: dummy variable for each school
 - assumes common residual variance ($\theta_i = \theta$)
 - need interaction of each dummy variable with LRT (how many?!)
 - assumes fixed school effect (inference limited to schools in the sample)

Creating a Joint Model

- Better approach: Random Coefficient model
 - school-specific intercept, school-specific slope
 - estimate mean intercept and mean slope
 - describe (co)variation in intercepts and slopes

Estimation using Stata

- We can use xtmixed to fit random coefficient models
 - xtreg can only fit 2-level random intercept models
- Recall: want to model GCSE as a function of LRT

GCSE Data

Random Intercept (RI) Model

- First we fit an RI model
 - subject-specific intercept
 - common LRT slope across schools
 - Var(Slope) = $\psi_{22} = 0$
 - Cov(Int,Slope) = $\psi_{12} = 0$

$GCSE_{ij} = \beta_1 + \beta_2 * LRT_{ij} + \zeta_{1j} + \varepsilon_{ij}$

Random-intercept model

49

. xtmixed gcse lrt || school:, mle nolog

	Mixed-effects ML regression Group variable: school						Number Number	of of	obs group	= os =		4059 65
							Obs pe	er gr	oup:	min = avg = max =		2 62.4 198
	Log likelihood =	-14024.799					Wald c Prob >	chi2(> chi	1) 2	=	2	042.57 0.0000
	gcse	Coef.	Std.	Err.		z	P> z		 [95%	Conf.	Int	erval]
 	2 lrt 2	.5633697 .0238706	.012	4654 2255 	45. 0.	19 06	0.000 0.952		.5389	9381)557	.5	878014 082982
	Random-effects	Parameters		Estimat	 ce	Std.	. Err.		[95%	Conf.	 Int	 erval]
$\sqrt{2}$	<u>sch</u> ool: Identity Ŷ ₁₁	sd(_cons)		3.03526	59	.305	52513		2.492	2261	3.	696587
	<u>.</u> 9	sd(Residual)	-+	7.52148	31	.084	1759		7.358	3295	7.	688285
	LR test vs. line	ar regressio	n: cl	nibar2(0)))	= 4	103.27	Prob) >= (chibar2	<u>2</u> =	0.0000

. estimates store ri

Is there an LRT effect?

$$H_0: \beta_2 = 0 \text{ vs } H_a: \beta_2 \neq 0$$

Conclusion:

- z = 0.5634/0.01247 = 45.19
- p-value < 0.001
- LRT is significantly associated with GCSE

95% CI for LRT effect?

 $\hat{\beta}_2 \pm 1.96 * \text{SE}(\hat{\beta}_2)$ = (0.54, 0.59) Calculate the ICC:

$$\hat{\rho} = \frac{\hat{\psi}_{11}}{\hat{\psi}_{11} + \hat{\theta}} = \frac{3.035^2}{3.035^2 + 7.521^2} = 0.14$$

Interpretation:

- Proportion of total variance in GCSE due to school-toschool variation is 14%
- Within-school correlation is relatively low

Random Coefficient Model

Random Coefficient (RC) Model

- Next we fit an RC model
 - subject-specific intercept
 - subject-specific slope
 - possible intercept-slope covariance

$GCSE_{ij} = \beta_1 + \beta_2 * LRT_{ij} + \zeta_{1j} + \zeta_{2j} * LRT_{ij} + \varepsilon_{ij}$

Random-coefficient model

55

•	xtmixed gcse lrt	school:1rt,	cov(unst	cructured)	mle nolog
Mi Gr	xed-effects ML regression oup variable: school	slope	Number Number	of obs = of groups =	4059 65
		Ψ ₁₂	Obs per	group: min = avg = max =	2 62.4 198
Lo	g likelihood = -14004.613		Wald ch Prob >	i2(1) = chi2 =	779.79 0.0000
	gcse Coef.	Std. Err. z	z P> z	[95% Conf.	Interval]
$\hat{eta}_2^- \\ \hat{eta}_1^-$	lrt .556729 _cons 115085	.0199368 27.9 .3978346 -0.2	0.000 29 0.772	.5176535 8948264	.5958044 .6646564
	Random-effects Parameters	 Estimate	Std. Err.	[95% Conf.	Interval]
SC	hool: Unstructured				
\hat{w}	sd(lrt) .1205646	.0189827	.0885522	.1641498
V Y 22	$\sqrt{\hat{\psi}_{11}} = \frac{\operatorname{sd}(\operatorname{cons})}{\operatorname{sd}(\operatorname{cons})}$) 3.007444	.3044148	2.466258	3.667385
	$\rho_{12} \text{ corr(lrt,_cons)}$) .4975415	.1487427	.1572768	.7322094
$\sqrt{\hat{ heta}}$	sd(Residual) 7.440787	.0839482	7.278058	7.607155
LR	test vs. linear regressi	on: chi2(3)	= 443.64	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store rc

Estimated Covariance and Correlation:

. estat recovariance

Random-effects covariance matrix for level school

Interpretation:

• LRT tends to have greater effect (slope) in schools with higher school-specific GCSE (intercept)

Does the RC model fit better than the RI model?

• Test the slope variance:

$$H_0: \psi_{22} = 0 \qquad H_a: \psi_{22} > 0$$

. lrtest rc ri

Original Investigation

Variability Among US Intensive Care Units in Managing the Care of Patients Admitted With Preexisting Limits on Life-Sustaining Therapies

Joanna L. Hart, MD, MSHP; Michael O. Harhay, MPH, MBE; Nicole B. Gabler, PhD, MHA; Sarah J. Ratcliffe, PhD; Caroline M. Quill, MD, MSHP; Scott D. Halpern, MD, PhD

- Retrospective cohort using Project IMPACT
- 277,693 patient visits in 141 ICUs in 105 hospitals
- Explored ICU- and patient-level associations with admission of patients with preexisting treatment limitations

Original Investigation

Variability Among US Intensive Care Units in Managing the Care of Patients Admitted With Preexisting Limits on Life-Sustaining Therapies

Joanna L. Hart, MD, MSHP; Michael O. Harhay, MPH, MBE; Nicole B. Gabler, PhD, MHA; Sarah J. Ratcliffe, PhD; Caroline M. Quill, MD, MSHP; Scott D. Halpern, MD, PhD

- Two illustrative analyses:
 - (1) Fixed effect models that did and did not include ICU as a fixed effect to explore the association of patient race (white / black / other) with the outcome
 - (2) Random effect models that did and did not include ICU as a random effect to explore the association of race and ICU model (open / closed) with the outcome

ICU as a fixed effect – patient level

	With ICU as a fixed	Without ICU as a
	effect	fixed effect
Race (ref=White)	OR (95% CI)	OR (95% CI)
Black	0.55 (0.51, 0.59)	0.47 (0.44, 0.50)
Other	0.56 (0.51. 0.60)	0.64 (0.59, 0.68)
Race (ref=White)	Beta (SE)	Beta (SE)
Black	-0.60 (0.036)	-0.75 (0.032)
Other	-0.59 (0.041)	-0.45 (0.036)

ICU as a random effect – patient and ICU level

	With ICU as a fixed	Without ICU as a		
	effect	fixed effect		
Race (ref=White)	OR (95% CI)	OR (95% CI)		
Black	0.55 (0.51, 0.58)	0.47 (0.44, 0.50)		
Other	0.56 (0.52, 0.60)	0.63 (0.59, 0.68)		
Model (ref=Open)				
Closed	1.07 (0.76, 1.51)	0.81 (0.75, 0.87)		
Race (ref=White)	Beta (SE)	Beta (SE)		
Black	-0.61 (0.035)	-0.76 (0.033)		
Other	-0.58 (0.040)	0.46 (0.036)		
Model (ref=Open)				
Closed	0.069 (0.177)	-0.22 (0.037)		

Mortality among Patients Admitted to Strained Intensive Care Units

Nicole B. Gabler^{1,2}, Sarah J. Ratcliffe¹, Jason Wagner^{2,3}, David A. Asch^{4,5,6,7}, Gordon D. Rubenfeld⁸, Derek C. Angus^{2,9}, and Scott D. Halpern^{1,2,3,4,5,6}

- Retrospective cohort using Project IMPACT
- 264,401 patient visits in 155 ICUs in 107 hospitals over 8 years (total of 658 ICU-years)
- Explored the association between ICU strain (census, acuity of other ICU patients, number of new admissions) and in-hospital mortality

Mortality among Patients Admitted to Strained Intensive Care Units

Nicole B. Gabler^{1,2}, Sarah J. Ratcliffe¹, Jason Wagner^{2,3}, David A. Asch^{4,5,6,7}, Gordon D. Rubenfeld⁸, Derek C. Angus^{2,9}, and Scott D. Halpern^{1,2,3,4,5,6}

- Multiple ways to cluster: Hospital? ICU? Year? ICU and year? ICU-year? Etc..
- Random or fixed effect?
- Cannot cluster on hospital and ICU because most hospitals only have a single ICU
- We chose to model ICU as a fixed effect to control for known differences across ICUs
- ICU and year entered as single term; if ICU-specific effects change over time, we did not want to assume the changes are in the same direction

Clustering on ICU and year

	ICU-year entered as a	ICU and year
	single term	entered separately
	OR (95% CI)	OR (95% CI)
Census	1.011 (0.996, 1.025)	1.011 (0.996, 1.025)
Acuity	0.998 (0.977, 1.019)	0.958 (0.937, 0.977)
Admissions	0.970 (0.957, 0.983)	0.967 (0.954, 0.979)
	Beta (SE)	Beta (SE)
Census	0.011 (0.007)	0.011 (0.007)
Acuity	-0.002 (0.011)	-0.043 (0.010)
Admissions	-0.031 (0.007)	-0.034 (0.007)

Final thoughts

- Clustering should be considered any time study participants can be contained within groups
- Failing to do so may result in incorrect estimates, confidence intervals, and p-values
- Fixed effects, random effects, and use of cluster/robust error terms are all ways to handle clustering
- The choice of the clustering variable depends on the data and your research question

Racial disparities

- Blacks and whites tend to live in segregated regions and use different hospitals
- If these hospitals differ in treatment patterns, some of the observed racial disparities may be mediated by a hospital effect rather than by race.
 - How does this affect policy implications of findings?

Hospitals, ranked by # of Black HPD Admissions

Don't....

- Include hospital-level characteristics (e.g., hospital fixed effects) in a patient-level regression.
 - If 2 patients who differed only in race (1 black and 1 white, but otherwise with the same measured clinical characteristics) went to 2 different hospitals with the same measured characteristics (eg, teaching status, size), would they experience the same care and outcomes?
 - Including hospital level characteristics in patient-level regressions can incorrectly attribute sources of variance between correlated variables such as a hospital and race
Do....

- Use multilevel (hierarchical) modeling, or
- Use individual hospital fixed effects (e.g., hospital ID) in patient-level regressions
 - if a black and white patient with similar measured clinical characteristics went to the same hospital, would they experience the same care and outcomes different?