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Learning objectives

List types of “hierarchically-organized” or
“clustered” data.

Describe errors in inference that may arise if the
structure of the data is not taken into account in
the statistical analysis.

Differentiate between the main statistical
approaches to hierarchical data.

ldentify an example in your own research
portfolio that may benefit from one of these
approaches.



Outline

1. Explain hierarchical modeling conceptually

2. Explain hierarchical modeling mathematically

3. Review examples from the presenters’

research relevant to palliative and end-of-life
care



Hierarchical or Multilevel Models

e The class is called “variance-component”

models; also called:
— Mixed models

— Heirarchical models
— Multi-level models



Conceptual explanation



Data

Why can’t we use ordinary linear regression in
these cases?

Rabe-Hesketh & Skrondal (2012): Multileve nd Longitudinal Modeling Using Stata

Children nested in families
(Cross-sectional data)
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Statistical explanation



Rabe-Hesketh & Skrondal (2012). Multilevel and Longitudinal Modeling Using Stata
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Repeated measures example (PEFR)

* Longitudinal data:
— Level-1 unit: time/occasion/visit
— Level-2 unit: subject



PEFR Dataset
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» Peak-expiratory-flow rate

( ) example

— Reliability study to assess
the quality of instruments
to measure PEFR

had PEFR measured

(L/min)

— used the new
(WM) peak-flow meter
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PEFR Dataset...

« WM 1stand 2" recordings by subject ID

— Horizontal line: overall mean
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Within a subject,
how far are the 2
measurements from
each other?

How far are the
subject-specific
means from the
overall mean?
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Random Intercept Model

Model:

Vi =B+¢; &

\

o~

(Intercept)
~N(O,v)

~N(0,0)

2-level model:
* Level-1 unit: occasion

e Level-2 unit: subject

Sources of variations?
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Random Intercept Model

Assumptions:

« Each (or ) 1s normally
distributed with mean zero
;' - N (O,l//)
J E( Yii )=p
&; ~ N(0,8)

« Variance components are

Cov(g;,¢;)=0 = Var(y;)=w+80

1] ?
« Covariance of any 2 observations within the same subject:

Cov(y, Vi) =V JET
« Observations from different subjects

Cov(y;, ¥;;:) =0 SE 15



Intra-Class Correlation (ICC)

e Of Interest Is the

. or the intra-class correlation.

_ Var ({ j ) _ v
Var (yij) v+0
— The more differences there are between subjects (relative to

within), the higher the ICC.
— like R? in ordinary regression

Yo,
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Yij

Rabe-Hesketh & Skrondal (2012): Multilevel and Longitudinal Modeling Using Stata
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Estimation using Stata

 To obtain the MLE for models
(such as the random intercept model), use m1e option

for either:
- Xtreg
— xtmixed

« xtreg more efficient, but postestimation commands
of xtmixed more useful

e Data needs to be In the format
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PEFR Example

Reshape the data:

/

reshape long wm, 1(id) 7 (occasion)
(note: 7 =1 2)

Data wide -> long
Number of obs. 17 -> 34
Number of variables 4 -> 4
J variable (2 values) -> occasion

x1] variables:
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PEFR Example...
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 Xtreg specifying
level-2 variable on the fly:

Xtreg wm,

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

Random-effects

a b w NP O

Group variable: id

Random effects

Log likelihood

i(id) mle
log likelihood = -187.89003
log likelihood = -184.95979
log likelihood = -184.76189
log likelihood = -184.5855
log likelihood = -184.5784
log likelihood = -184.57839
ML regression
u i ~ Gaussian
= -184.57839
Coef Std. Err
453.9118 26.18616
107.0464 18.67858
19.91083 3.414659
.9665602 .0159494

Number of obs = 34

Number of groups = 17

Obs per group: min = 2

avg = 2.0

max = 2

Wald chi2 (0) = 0.00
Prob > chi?2 =

P>|z| [95% Conf. Interval]

0.000 402.5878 505.2357

76.0406 150.6949

14.2269 27.86560

.9210943 .9878545

Likelihood-ratio

test of sigma u=0:

chibar2 (01) =

46.27 Prob>=chibar2 = 0.000



 Xtreg specifying
level-2 variable at the beginning:

. xtset 1d
panel variable: id (balanced)
. xtreg wm, mle nolog

Random-effects ML regression Number of obs = 34
Group variable: id Number of groups = 17
Random effects u i ~ Gaussian Obs per group: min = 2
avg = 2.0
max = 2
Wald chi2 (0) = 0.00

Log likelihood = -184.57839 Prob > chi?2 =
wm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
/3 _cons | 453.9118 26.18616 17.33 0.000 402.5878 505.2357
_____________ +________________________________________________________________
w/¢; /sigma u | 107.0464 18.67858 76.0406 150.06949
A /sigma e | 19.91083 3.414659 14.2269 27.8656

6 _
i} rho | .9665602 .0159494 .9210943 .9878545
Likelihood-ratio test of sigma u=0: chibar2(01)= 46.27 Prob>=chibar2 = 0.000
o 2
N 107.05 0.97
P=—7""~= 2 2 — Y
w+6 107.05°+19.91
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xtmixed wm || id:, mle
Performing EM optimization:
Performing gradient-based optimization:

Iteration O: log likelihood = -184.57839
Iteration 1: log likelihood = -184.57839

Computing standard errors:

Mixed-effects ML regression Number of obs = 34
Group variable: id Number of groups = 17
Obs per group: min = 2
avg = 2.0
max = 2

Wald chiZ2 (0) =

Log likelihood = -184.57839 Prob > chi?2 =
wm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
A T ——————— -
/3 cons | 453.9118 26.18617 17.33 0.000 402.5878 505.2357
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ _|._________________________________________________

id: Identity |

" sd( cons) | 107.0464 18.67858 76.04062 150.695
N -l T lT
1/é sd (Residual) | 19.91083 3.414678 14.22687 27.86564

LR test vs. linear regression: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000

23



Inference

* \We make Inferences on the population
H,:=0wH,_:8%0

A

B

=52 ) 95%Cl : #+1.96* SE(f)

 \We can also test the
H, w=0wH, x>0

— whether there is significant between-subject heterogeneity

— whether random intercept is needed (relative to linear
regression)

— can use likelihood ratio test

24



xtreg wm, mle nolog

wm | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ +_______________________________________ ——
_cons | 453.9118 26.18616 17.33 0.000 402.5878 505.2357
_____________ +_______________________________________ ——
/sigma u | 107.0464 18.67858 76.04006 150.6949
/sigma e | 19.91083 3.414659 14.2269 27.865606

rho | .9665602 .0159494 .9210943 .9878545

Likelihood-ratio test of sigma u=0: chibar2 (01)= 4f .27 Prob>=chibar?2 = 0.000
A
| 1
xtmixed wm || id:, mle j
wm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________
_cons | 453.9118 26.18617 17.33 0.000 402.5878 505.2357
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ _|_________________________________________________
id: Identity |
sd(_cons) | 107.0464 18.67858 76.040062 150.695
_____________________________ _|_________________________________________________
sd (Residual) | 19.91083 3.414678 14.22687 27.86564
LR test vs. linear regression: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000

Hy 1y

25
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 equivalent to fitting reduced and full model then

using the 1rtest command.
— because of the constraint y>0, the p-value has to be

. estimates store ri
. quietly xtmixed wm, mle
. lrtest ri

46.27
0.0000

Likelihood-ratio test LR chi2 (1)
(Assumption: . nested in ri) Prob > chi?2

26



Fixed vs Random Effects

* In the PEFR example, we could have treated
the subject effects as a factor in an
ANOVA model (or as a bunch of dummy
variables in a regression model). This is known
as a model.

 Both the random intercept model and fixed
effects model include

(level-2) to account for unobserved
heterogeneity

27



Fixed vs Random Effects...

 \Which model should be used?

— If the target of inference is on the of
subjects/groups, then the effect should be random.

— If the target of inference is on the subjects/groups
In the , then the effect should be
fixed.

28



Fixed vs Random Effects...

* Notes on random effects:
— assume cluster effects is , 1.e., at the
same level
— need enough clusters (>10)
— cluster size at least 2 (but singletons also used but
don’t contribute to estimating within-cluster
correlation)

29



Clustered data example (GSCE)

e Cross-sectional data:
— Level-1 unit; student
— Level-2 unit: school

30



Models

« Random model

of response vary between clusters
« Random model with

of response vary between clusters

common across clusters

« Random Coefficient model (with covariate)
of response vary between clusters
vary between clusters

31



GCSE Example

« How effective are different schools?

. Graduate Certificate of Secondary
Education (GCSE) — taken at age 16

: ~4000 students within 65 schools

. London Reading test (LRT) —
taken at age 11

. gender, school type
» Research question:

— Effect of LRT on GCSE?
— Does It vary among schools?

32



GCSE

School 3

School 2

School 1

LRT

_Inear regression
Random intercept
Random Coefficient

GCSE

School 3
School 2

GCSE

:EEEEEEEEEEEEEEEEEE; .
LRT

School 3

School 2

School 1

LRT
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 Longitudinal data

ID 3

ID 2

Outcome

ID 1

//

Time



GCSE Data

school
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Separate Linear Regression

for each School

Vi = Dij + Do % +&;

e

/

|

intercept

slope

~N(0,6))

36




 Fit aregression line for school 1:

use http://www.stata-press.com/data/mlmus3/gcse
regress gcse lrt if school==1

Source | SS df MS Number of obs = 73
————————————— - - F( 1, 71) = 59.44
Model | 4084.89189 1 4084.89189 Prob > F = 0.0000
Residual | 4879.35759 71 68.7233463 R-squared = 0.4557
————————————— fom Adj R-squared = 0.4480
Total | 8964.24948 72  124.503465 Root MSE = 8.29

gcse | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ +________________________________________________________________
lrt | .7093406 .09200061 7.71 0.000 .5258856 .8927955

cons | 3.833302 .9822377 3.90 0.000 1.874776 5.791828

37



» Fitted regression line for school 1:

. predict p gcse, xb
. twoway

(scatter gcse 1rt)

ytitle (GCSE)

20

10

-10

(line p gcse 1lrt, sort) if school==1, xtitle (LRT)

30

LRT

Linear prediction
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« To obtain a trellis
graph containing such

plots for all 65 school:

. twoway (scatter gcse 1lrt) (1fit
gcse 1lrt, sort lpatt(solid)),
by (school, compact
legend (off) cols(5))
xtitle (LRT) ytitle (GCSE)
ysize (3) xsize(2)

o .% .§ ..&’ s% '..% .'% "% ~% I %v e }3%
A R £ "-'. E "".. o o % H o d 5. F .,'g o - Al

v

¥
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! L ol <. . % DY)

Graphs by school
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Separate Linear Regression
for each School

« \We will now fit a SLRM for each school and
summarize the estimates across schools:
1. Estimate slope and intercept for each school
2. Estimate the mean slope and mean intercept

3. Estimate variance and covariance (also
correlation) for slopes and intercepts

40



e Stata code

egen num=count (gcse) , by (school)
statsby inter= b[ cons] slope= b[lrt],by(school) saving(ols): regress gcse lrt if num>4

(running regress on estimation sample)

command: regress gcse lrt if num>4
inter: Db[ cons]
slope: bl[lrt]

by: school

Statsby groups

————f——= 1 ———4—-= 2 ———4——= 3 ———4——— 4 ———+--—-5
.................................................. 50
sort school
merge m:1 school using ols
Result # of obs.
not matched 2
from master 2 (_merge==1)
from using 0 ( _merge==2)
matched 4,057 (_merge==3)

drop merge
twoway scatter slope inter, xtitle(Intercept) ytitle(Slope)



« Scatter plot of fitted slopes and intercepts

T
-10

Intercept

« Do the intercepts vary across schools?
» Do the slopes vary across schools?

Is there a

between the intercepts and slopes?

42



Spaghetti Plot:

. generate pred=intert+slope*lrt

(2 missing values generated)
. sort school 1rt

. twoway (line pred lrt, connect(ascending)), xtitle(LRT) ytitle (Fitted
regression lines)

S « Do the
Intercepts
vary across
schools?

« Do the
slopes vary
across
schools?

20

10

-10

-20

-40 -20 0 20 40
43



Creating a Joint Model

« Approach 1: dummy variable for each school
— assumes common residual variance (6; = 0)

— need interaction of each dummy variable with LRT
(how many?!)

— assumes fixed school effect (inference limited to
schools in the sample)

44



Creating a Joint Model

 Better approach: Random Coefficient model
— school-specific intercept, school-specific slope
— estimate mean intercept and mean slope
— describe (co)variation in intercepts and slopes

45



Estimation using Stata

« \WWe can use xtmixed to fit

models
— xtreg can only fit 2-level
models

e Recall: want to model GCSE as a function of
LRT

46



GCSE Data

school
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Random Intercept (RI) Model

 First we fit an Rl model
— subject-specific intercept
— common LRT slope across schools
* Var(Slope) = y,, =0
 Cov(Int,Slope) =y,, =0

GCSEU. =0+ 5,7 LRTij +§1j +&;

48



2.0

Random-intercept model

49



. xtmixed gcse 1lrt || school:,

mle nolog

Mixed-effects ML regression Number of obs = 4059

Group variable: school Number of groups = 65

Obs per group: min = 2

avg = 62.4

max = 198

Wald chi2 (1) = 2042.57

Log likelihood = -14024.799 Prob > chi? = 0.0000

gcse | Coef Std. Err z P>|z| [95% Conf. Interval]

A g g g

ﬁ% lrt | .5633697 .0124654 45.19 0.000 .5389381 .5878014

/% _cons | .0238706 .4002255 0.06 0.952 -.760557 .8082982

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ _|._________________________________________________
school: Identity |

¢h1 sd( cons) | 3.035269 .3052513 2.492261 3.696587

e e

VQ;- sd (Residual) | 7.521481 .0841759 7.358295 7.688285

LR test vs. linear regression: chibar2(01) = 403.27 Prob >= chibar2 = 0.0000

. estimates store ri

50



Is there an LRT effect?

H,: 5, =0vsH_: 5, #0

05% CI for LRT effect?

B, +1.96*SE(3, )
- (0.54,0.59)

o1



Calculate the ICC:

N2 3.035°
P +6 3035 +7521

Interpretation:

=0.14
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Random Coefficient Model

Model:

\

overall
mean
Intercept

\

overall mean
Slope (effect)

Yii :/Bl"‘ﬂinQVu +6,i X + &

N

School |
slope
deviation
Error term
School j ~N(0,6)
Intercept
deviation

53




Random Coefficient (RC) Model

* Next we fit an RC model
— subject-specific intercept
— subject-specific slope
— possible intercept-slope covariance

GCSE; = B, + 5, *LRT; + &, +&,; *LRT; + &,

54



Random-coefficient model

55



. xtmixed gcse 1lrt || school:1lrt, cov(unstructured) mle nolog

Mixed-effects ML regressj:;\\\\\\////27

Group variable: school

Number of obs = 4059

sk)pe Number of groups = 65
Obs per group: min = 2

avg = 62.4

max = 198

Wald chi2 (1) = 779.79

Log likelihood = -14004.613 Prob > chi? = 0.0000
gcse | Coef Std. Err. Z P>|z| [95% Conf. Interval]

A g g g
ﬁ% lrt | .556729 .0199368 27.92 0.000 .5176535 .5958044
| -.115085 .3978346 -0.29 0.772 -.8948264 .6646564

|

_____________________________ _|._
school: Unstructured |
V[:__ sd(lrt) |
Va2 /l/} sd(_cons) |
11 ﬁ%z corr (lrt, cons) |
_____________________________ +

LR test vs. linear regression:

Note: LR test is conservative

. estimates store rc

Estimate Std. Err [95% Conf. Interval]
.12050640 .0189827 .0885522 .1641498
3.007444 .3044148 2.466258 3.667385
.4975415 .1487427 .1572768 .7322094
7.440787 0839482 7.278058 7.607155

chi2 (3) = 443 .64 Prob > chi2 = 0.0000

and provided only for reference.
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Estimated Covariance and Correlation:

. estat recovariance
Random-effects covariance matrix for level school

| lrt _cons
_____________ _+_______________________
1rt | .0145358
_cons | .1804042 9.04472

Vo 0.18
\/'7911'7;22 +0.0145%9.044

Interpretation:

=0.50

Lo =

57



Does the RC model than the RI model?
» Test the slope variance:

H,: y,, =0 H, v,,>0

lrtest rc ri

Likelihood-ratio test LR chi2 (2) 40.37
(Assumption: ri nested in rc) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is jpot on
the boundary of the parameter space. If this is not true, then the

reported test is conservative.

Need to divide by
2 1o get correct p-
value
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Examples



Original Investigation

Variability Among US Intensive Care Units
in Managing the Care of Patients Admitted
With Preexisting Limits on Life-Sustaining Therapies

Joanna L. Hart, MD, MSHP; Michael O. Harhay, MPH, MBE; Nicole B. Gabler, PhD, MHA; Sarah J. Ratcliffe, PhD;
Caroline M. Quill, MD, MSHP; Scott D. Halpern, MD, PhD

e Retrospective cohort using Project IMPACT
e 277,693 patient visits in 141 ICUs in 105 hospitals

e Explored ICU- and patient-level associations with
admission of patients with preexisting treatment
limitations



Original Investigation

Variability Among US Intensive Care Units
in Managing the Care of Patients Admitted
With Preexisting Limits on Life-Sustaining Therapies

Joanna L. Hart, MD, MSHP; Michael O. Harhay, MPH, MBE; Nicole B. Gabler, PhD, MHA; Sarah J. Ratcliffe, PhD;
Caroline M. Quill, MD, MSHP; Scott D. Halpern, MD, PhD

 Two illustrative analyses:

— (1) Fixed effect models that did and did not include ICU as
a fixed effect to explore the association of patient race
(white / black / other) with the outcome

— (2) Random effect models that did and did not include ICU
as a random effect to explore the association of race and
ICU model (open / closed) with the outcome



ICU as a fixed effect — patient level

With ICU as a fixed Without ICU as a
effect fixed effect

Race (ref=White) OR (95% ClI) OR (95% Cl)

0.55 (0.51, 0.59) 0.47 (0.44, 0.50)
0.56 (0.51. 0.60) 0.64 (0.59, 0.68)
Race (ref=White) Beta (SE) Beta (SE)
-0.60 (0.036) -0.75 (0.032)

-0.59 (0.041) -0.45 (0.036)



ICU as a random effect — patient and
ICU level

™™ ] M
effect fixed effect
OR (95% Cl) OR (95% Cl)
DT 055(0.51, 0.58) 0.47 (0.44, 0.50)
DT 0.56(0.52, 0.60) 0.63 (0.59, 0.68)
1.07 (0.76, 1.51) 0.81(0.75, 0.87)
R
Beta (SE) Beta (SE)
DTS 0.61(0.035) -0.76 (0.033)
DI -0.58(0.040) 0.46 (0.036)
0.069 (0.177) -0.22 (0.037)



Mortality among Patients Admitted to Strained
Intensive Care Units

Nicole B. Gabler'?, Sarah |. Ratcliffe!, Jason Wagner?3, David A. Asch*>%7, Gordon D. Rubenfeld?,
Derek C. Angus??, and Scott D. Halpern.2345¢6

e Retrospective cohort using Project IMPACT

e 264,401 patient visits in 155 ICUs in 107 hospitals
over 8 years (total of 658 ICU-years)

* Explored the association between ICU strain (census,
acuity of other ICU patients, number of new
admissions) and in-hospital mortality



Mortality among Patients Admitted to Strained
Intensive Care Units

Nicole B. Gabler'?, Sarah |. Ratcliffe!, Jason Wagner?3, David A. Asch*>%7, Gordon D. Rubenfeld?,
Derek C. Angus??, and Scott D. Halpern.2345¢6

* Multiple ways to cluster: Hospital? ICU? Year? ICU and
year? ICU-year? Etc..

e Random or fixed effect?

e Cannot cluster on hospital and ICU because most
hospitals only have a single ICU

* We chose to model ICU as a fixed effect to control for
known differences across ICUs

* |CU and year entered as single term; if ICU-specific
effects change over time, we did not want to assume the
changes are in the same direction



Clustering on ICU and year

ICU-year entered as a
single term entered separately
OR (95% Cl) OR (95% Cl)
1.011 (0.996, 1.025) 1.011(0.996, 1.025)

0.998 (0.977,1.019)  0.958 (0.937, 0.977)
0.970 (0.957, 0.983) 0.967 (0.954, 0.979)

Beta (SE) Beta (SE)
Census 0.011 (0.007) 0.011 (0.007)
Acuity -0.002 (0.011) -0.043 (0.010)
-0.031 (0.007) -0.034 (0.007)



Final thoughts

Clustering should be considered any time study
participants can be contained within groups

Failing to do so may result in incorrect estimates,
confidence intervals, and p-values

Fixed effects, random effects, and use of
cluster/robust error terms are all ways to handle
clustering

The choice of the clustering variable depends on the
data and your research question



Racial disparities

* Blacks and whites tend to live in segregated
regions and use different hospitals

* |f these hospitals differ in treatment patterns,
some of the observed racial disparities may be
mediated by a hospital effect rather than by
race.

— How does this affect policy implications of
findings?
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Don’t....

* Include hospital-level characteristics (e.g.,
hospital fixed effects) in a patient-level
regression.

— If 2 patients who differed only in race (1 black and 1
white, but otherwise with the same measured clinical
characteristics) went to 2 different hospitals with the
same measured characteristics (eg, teaching status,
size), would they experience the same care and
outcomes?

* Including hospital level characteristics in patient-level
regressions can incorrectly attribute sources of variance
between correlated variables such as a hospital and race



Do....

* Use multilevel (hierarchical) modeling, or

e Use individual hospital fixed effects (e.g.,
nospital ID) in patient-level regressions

— if a black and white patient with similar measured
clinical characteristics went to the same hospital,
would they experience the same care and
outcomes different?



